Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Niobium chloride (Nb3Cl8) is a layered two-dimensional semiconducting material with many exotic properties including a breathing kagome lattice, a topological flat band in its band structure, and a crystal structure that undergoes a structural and magnetic phase transition at temperatures below 90 K. Despite being a remarkable material with fascinating new physics, the understanding of its phonon properties is at its infancy. In this study, we investigate the phonon dynamics of Nb3Cl8in bulk and few layer flakes using polarized Raman spectroscopy and density-functional theory (DFT) analysis to determine the material’s vibrational modes, as well as their symmetrical representations and atomic displacements. We experimentally resolved 12 phonon modes, five of which areA1gmodes while the remaining seven areEgmodes, which is in strong agreement with our DFT calculation. Layer-dependent results suggest that the Raman peak positions are mostly insensitive to changes in layer thickness, while peak intensity and full width at half maximum are affected. Raman measurements as a function of excitation wavelength (473–785 nm) show a significant increase of the peak intensities when using a 473 nm excitation source, suggesting a near resonant condition. Temperature-dependent Raman experiments carried out above and below the transition temperature did not show any change in the symmetries of the phonon modes, suggesting that the structural phase transition is likely from the high temperatureP 1 phase to the low-temperatureR phase. Magneto-Raman measurements carried out at 140 and 2 K between −2 and 2 T show that the Raman modes are not magnetically coupled. Overall, our study presented here significantly advances the fundamental understanding of layered Nb3Cl8material which can be further exploited for future applications.more » « less
- 
            The magnetic proximity effect (MPE) has recently been explored to manipulate interfacial properties of two-dimensional (2D) transition metal dichalcogenide (TMD)/ferromagnet heterostructures for use in spintronics and valleytronics. However, a full understanding of the MPE and its temperature and magnetic field evolution in these systems is lacking. In this study, the MPE has been probed in Pt/WS2/BPIO (biphase iron oxide, Fe3O4 and α-Fe2O3) heterostructures through a comprehensive investigation of their magnetic and transport properties using magnetometry, four-probe resistivity, and anomalous Hall effect (AHE) measurements. Density functional theory (DFT) calculations are performed to complement the experimental findings. We found that the presence of monolayer WS2 flakes reduces the magnetization of BPIO and hence the total magnetization of Pt/WS2/BPIO at T > ~120 K—the Verwey transition temperature of Fe3O4 (TV). However, an enhanced magnetization is achieved at T < TV. In the latter case, a comparative analysis of the transport properties of Pt/WS2/BPIO and Pt/BPIO from AHE measurements reveals ferromagnetic coupling at the WS2/BPIO interface. Our study forms the foundation for understanding MPE-mediated interfacial properties and paves a new pathway for designing 2D TMD/magnet heterostructures for applications in spintronics, opto-spincaloritronics, and valleytronics.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
